Amortissement d'un prêt

Mathilde vient d'acheter un appartement. Elle doit emprunter 150 000 \in .

Une banque lui propose un prêt avec un taux de 2,4% annuel, ce qui représente un taux mensuel de 0,198%.

Mathilde décide de rembourser 900 € par mois.

Nous allons étudier la durée de son prêt.

1. Tableau d'amortissement

La feuille de calcul suivante représente le tableau d'amortissement du prêt de Mathilde mois après mois.

	Α	В	С	D	E	F	G	Н	1
1	Mois	Montant de la dette en début de mois	Intérêts	Mensualités	Montant de la dette en fin de mois	Amortissement		Montant de l'emprunt	150 000,00 €
2	1	150 000,00 €	297,00 €	900,00 €	149 397,00 €	603,00 €		Taux mensuel	0,198
3	2	149 397,00 €	295,81 €	900,00 €	148 792,81 €	604,19 €			
4	3	148 792,81 €	294,61 €	900,00 €	148 187,42 €	605,39 €			
5	4	148 187,42 €	293,41 €	900,00 €	147 580,83 €	606,59 €			
6	5	147 580,83 €	292,21 €	900,00 €	146 973,04 €	607,79 €			
7	6	146 973,04 €	291,01 €	900,00 €	146 364,04 €	608,99 €			
8	7	146 364,04 €	289,80 €	900,00 €	145 753,84 €	610,20 €			

Quelques données pour comprendre ce tableau :

Chaque mois, les intérêts représentent 0,198% du montant restant dû en début de mois. Les mensualités sont fixes est de 900 €.

Le montant de la dette en fin de mois correspond au montant de la dette en début de mois + les intérêts – la mensualité remboursée par Mathilde.

L'amortissement correspond à la part de capital remboursée durant le mois.

- a. Comprendre le fonctionnement de ce tableau et à l'aide de votre calculatrice afin de retrouver par le calcul les données de la première ligne.
- b. Recopier ce tableau, et mettre les bonnes formules dans les case C2, E2, F2 et B3 afin de pouvoir les étirer.
- c. Étirer les cellules vers le bas. Quand fait-il s'arrêter et pourquoi?
- d. Combien de mois faudra-t-il à Mathilde pour rembourser son prêt ?

2. Avec Python

Avec Python, nous pouvons faire un programme qui nous calculera directement combien de mois il faudra à Mathilde pour rembourser son prêt.

Voici le code pour le faire :

```
def duree(c):
m=900
t=0.198
d=c
i=0
while d>0:
    d=d+t/100*d-m
i=i+1
return i
```

Dans ce code, c représente le capital emprunté, m le montant de la mensualité, t le taux d'intérêt mensuel.

Trouver la valeur manquante, taper le code sous Thonny (ne pas faire de copier/coller), et exécuter la fonction durée ainsi créée en écrivant :

duree(150000)

Retrouvez-vous le même résultats?

3. Avec des suites

On note u_n le montant de la dette à la fin du n-ième mois et v_n l'amortissement au n-ième mois.

On a donc $u_0 = 150\,000$ et $v_1 = 603$.

- 1. À l'aide du tableau du 1., lire u_1 , 2 et u_{50} ainsi que v_2 et v_{50} .
- 2. Quel semble être le sens de variation des suites (u_n) et (v_n) .
- 3. Expliquer pourquoi on a : $u_{n+1} = 1,00198 u_n 900$.
- 4. Est-ce que (u_n) est une suite arithmétique ou géométrique?