Fonction et nombres premiers

D'après l'Olympiade de Mathématiques 2019

On note N l'ensemble des entiers naturels. Un nombre premier est un entier naturel qui a exactement 2 diviseurs entiers naturels distincts : 1 et lui-même. Par exemple : 2, 3 et 5 sont premiers alors que 0, 1 et 6 ne le sont pas. On rappelle le **théorème de décomposition** en produit de facteurs premiers :

Pour tout entier naturel $n \ge 2$, il existe un unique entier naturel k, une unique liste de nombres premiers distincts rangés dans l'ordre croissant $(p_1, p_2, ..., p_k)$ et une unique liste d'entiers naturels non nuls $(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_k)$ tels que:

$$n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \dots p_k^{\alpha_k}$$

On écrit, par exemple, $72 = 2^3 \times 3^2$ (ici k=2), ou $32 = 2^5$ (dans ce dernier exemple, k=1). La décomposition en produit de facteurs premiers d'un nombre premier p s'écrit simplement $p = p^1$.

Une fonction agissant sur les nombres entiers naturels

On souhaite si possible déterminer une fonction $\Delta \colon \mathbb{N} \to \mathbb{N}$ possédant les propriétés suivantes :

Propriété (1) : $\Delta(0) = \Delta(1) = 0$;

Propriété (2) : Pour tout nombre premier p, $\Delta(p)=1$.

Propriété (3) : Pour tous entiers naturels a et b: $\Delta(a \times b) = \Delta(a) \times b + a \times \Delta(b)$

On suppose en questions 1, 2 et 3 qu'une telle fonction Δ existe.

- 1. Soit p un nombre premier. Les propriétés précédentes permettent-elles d'exprimer $\Delta(p^2)$? $\Delta(p^3)$? Un entier naturel n étant donné, quelle est l'image par Δ de p^n ?
- 2. a. Soit p et q des nombres premiers distincts, m et n des entiers naturels supérieurs ou égaux à 1. Les propriétés précédentes permettent-elles d'exprimer $\Delta(p^m \times q^n)$?
- b. Le nombre $\Delta(10^n)$? est-il un multiple de 7 pour $n \ge 1$?
- 3. À tout nombre entier $n \ge 2$, dont la décomposition en produit de facteurs premiers s'écrit :

$$n = p_1^{\alpha_1} \times p_2^{\alpha_2} \times \dots p_k^{\alpha_k}$$

on associe les quotients \mathbf{q}_1 de n par $\mathbf{p}_1,\ \mathbf{q}_2$ de n par \mathbf{p}_2,\dots , \mathbf{q}_k quotient de n par \mathbf{p}_k . Montrer qu'alors :

$$\Delta(n) = \alpha_1 \times q_1 + \alpha_2 \times q_2 + \dots + \alpha_k \times q_k$$

4. Vérifier que l'expression ainsi obtenue satisfait les propriétés (2) et (3) ci-dessus. Cette expression, alliée à la convention portée dans la propriété (1), définit donc une unique fonction Δ convenable.

Étude de quelques images d'entiers par la fonction Δ .

- 5. a. Calculer $\Delta(12)$, $\Delta(56)$, $\Delta(1\ 001)$.
- b. Quelles sont les solutions de l'équation $\Delta(x)=0$?
- c. Quelles sont les solutions de l'équation $\Delta(x)=1$?
- d. Tout entier naturel n a-t-il au moins un antécédent par Δ ?
- e. Est-il vrai que, pour tout entier naturel $n, \Delta(n) \leq n$?
- 6. a. Montrer que si p et q sont des nombres premiers alors $\Delta(p \times q) = \Delta(p) + \Delta(q)$.
- b. Est-il vrai que pour tous entiers naturels a et $b: \Delta(a \times b) = \Delta(a) + \Delta(b)$?
- 7. a. Est-il vrai que pour tous entiers naturels a et b: $\Delta(a+b) = \Delta(a) + \Delta(b)$?
- b. Soient a et b deux entiers naturels tels que $\Delta(a+b) = \Delta(a) + \Delta(b)$ et un entier naturel quelconque k. Montrer que : $\Delta(ka+kb) = \Delta(ka) + \Delta(kb)$.

Les points fixes de la fonction Δ

8. a. Soit p un nombre premier. Soit m un entier naturel. On suppose que m est un multiple de p^p . Montrer que dans ce cas, $\Delta(m)$ est aussi un multiple de p^p .

b. Soit n un entier naturel et p un nombre premier. Soit α l'exposant de p dans la décomposition en produit de facteurs premiers de n.

On suppose que $\alpha \geq 1$. Montrer que si $\alpha < p$, alors $\alpha - 1$ est l'exposant de p dans la décomposition en produit de facteurs premiers de $\Delta(n)$.

9. Résoudre l'équation $\Delta(x) = x$.